Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Snail synchronizes endocycling in a TOR-dependent manner to coordinate entry and escape from endoreplication pausing during the Drosophila critical weight checkpoint.

Identifieur interne : 000044 ( Main/Exploration ); précédent : 000043; suivant : 000045

Snail synchronizes endocycling in a TOR-dependent manner to coordinate entry and escape from endoreplication pausing during the Drosophila critical weight checkpoint.

Auteurs : Jie Zeng [Canada] ; Nhan Huynh [Canada] ; Brian Phelps [Canada] ; Kirst King-Jones [Canada]

Source :

RBID : pubmed:32097403

Descripteurs français

English descriptors

Abstract

The final body size of any given individual underlies both genetic and environmental constraints. Both mammals and insects use target of rapamycin (TOR) and insulin signaling pathways to coordinate growth with nutrition. In holometabolous insects, the growth period is terminated through a cascade of peptide and steroid hormones that end larval feeding behavior and trigger metamorphosis, a nonfeeding stage during which the larval body plan is remodeled to produce an adult. This irreversible decision, termed the critical weight (CW) checkpoint, ensures that larvae have acquired sufficient nutrients to complete and survive development to adulthood. How insects assess body size via the CW checkpoint is still poorly understood on the molecular level. We show here that the Drosophila transcription factor Snail plays a key role in this process. Before and during the CW checkpoint, snail is highly expressed in the larval prothoracic gland (PG), an endocrine tissue undergoing endoreplication and primarily dedicated to the production of the steroid hormone ecdysone. We observed two Snail peaks in the PG, one before and one after the molt from the second to the third instar. Remarkably, these Snail peaks coincide with two peaks of PG cells entering S phase and a slowing of DNA synthesis between the peaks. Interestingly, the second Snail peak occurs at the exit of the CW checkpoint. Snail levels then decline continuously, and endoreplication becomes nonsynchronized in the PG after the CW checkpoint. This suggests that the synchronization of PG cells into S phase via Snail represents the mechanistic link used to terminate the CW checkpoint. Indeed, PG-specific loss of snail function prior to the CW checkpoint causes larval arrest due to a cessation of endoreplication in PG cells, whereas impairing snail after the CW checkpoint no longer affected endoreplication and further development. During the CW window, starvation or loss of TOR signaling disrupted the formation of Snail peaks and endocycle synchronization, whereas later starvation had no effect on snail expression. Taken together, our data demonstrate that insects use the TOR pathway to assess nutrient status during larval development to regulate Snail in ecdysone-producing cells as an effector protein to coordinate endoreplication and CW attainment.

DOI: 10.1371/journal.pbio.3000609
PubMed: 32097403
PubMed Central: PMC7041797


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Snail synchronizes endocycling in a TOR-dependent manner to coordinate entry and escape from endoreplication pausing during the Drosophila critical weight checkpoint.</title>
<author>
<name sortKey="Zeng, Jie" sort="Zeng, Jie" uniqKey="Zeng J" first="Jie" last="Zeng">Jie Zeng</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Biological Sciences, University of Alberta, Edmonton, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Biological Sciences, University of Alberta, Edmonton</wicri:regionArea>
<placeName>
<settlement type="city">Edmonton</settlement>
<region type="state">Alberta</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Huynh, Nhan" sort="Huynh, Nhan" uniqKey="Huynh N" first="Nhan" last="Huynh">Nhan Huynh</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Biological Sciences, University of Alberta, Edmonton, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Biological Sciences, University of Alberta, Edmonton</wicri:regionArea>
<placeName>
<settlement type="city">Edmonton</settlement>
<region type="state">Alberta</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Phelps, Brian" sort="Phelps, Brian" uniqKey="Phelps B" first="Brian" last="Phelps">Brian Phelps</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Biological Sciences, University of Alberta, Edmonton, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Biological Sciences, University of Alberta, Edmonton</wicri:regionArea>
<placeName>
<settlement type="city">Edmonton</settlement>
<region type="state">Alberta</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="King Jones, Kirst" sort="King Jones, Kirst" uniqKey="King Jones K" first="Kirst" last="King-Jones">Kirst King-Jones</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Biological Sciences, University of Alberta, Edmonton, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Biological Sciences, University of Alberta, Edmonton</wicri:regionArea>
<placeName>
<settlement type="city">Edmonton</settlement>
<region type="state">Alberta</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32097403</idno>
<idno type="pmid">32097403</idno>
<idno type="doi">10.1371/journal.pbio.3000609</idno>
<idno type="pmc">PMC7041797</idno>
<idno type="wicri:Area/Main/Corpus">000109</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000109</idno>
<idno type="wicri:Area/Main/Curation">000109</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000109</idno>
<idno type="wicri:Area/Main/Exploration">000109</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Snail synchronizes endocycling in a TOR-dependent manner to coordinate entry and escape from endoreplication pausing during the Drosophila critical weight checkpoint.</title>
<author>
<name sortKey="Zeng, Jie" sort="Zeng, Jie" uniqKey="Zeng J" first="Jie" last="Zeng">Jie Zeng</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Biological Sciences, University of Alberta, Edmonton, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Biological Sciences, University of Alberta, Edmonton</wicri:regionArea>
<placeName>
<settlement type="city">Edmonton</settlement>
<region type="state">Alberta</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Huynh, Nhan" sort="Huynh, Nhan" uniqKey="Huynh N" first="Nhan" last="Huynh">Nhan Huynh</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Biological Sciences, University of Alberta, Edmonton, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Biological Sciences, University of Alberta, Edmonton</wicri:regionArea>
<placeName>
<settlement type="city">Edmonton</settlement>
<region type="state">Alberta</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Phelps, Brian" sort="Phelps, Brian" uniqKey="Phelps B" first="Brian" last="Phelps">Brian Phelps</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Biological Sciences, University of Alberta, Edmonton, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Biological Sciences, University of Alberta, Edmonton</wicri:regionArea>
<placeName>
<settlement type="city">Edmonton</settlement>
<region type="state">Alberta</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="King Jones, Kirst" sort="King Jones, Kirst" uniqKey="King Jones K" first="Kirst" last="King-Jones">Kirst King-Jones</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Biological Sciences, University of Alberta, Edmonton, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Biological Sciences, University of Alberta, Edmonton</wicri:regionArea>
<placeName>
<settlement type="city">Edmonton</settlement>
<region type="state">Alberta</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PLoS biology</title>
<idno type="eISSN">1545-7885</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Body Weight (MeSH)</term>
<term>Cell Cycle (physiology)</term>
<term>Drosophila Proteins (genetics)</term>
<term>Drosophila Proteins (metabolism)</term>
<term>Drosophila melanogaster (genetics)</term>
<term>Drosophila melanogaster (growth & development)</term>
<term>Drosophila melanogaster (metabolism)</term>
<term>Ecdysone (metabolism)</term>
<term>Endocrine Cells (metabolism)</term>
<term>Endoreduplication (MeSH)</term>
<term>Gene Expression (MeSH)</term>
<term>Gene Expression Regulation, Developmental (MeSH)</term>
<term>Larva (genetics)</term>
<term>Larva (growth & development)</term>
<term>Larva (microbiology)</term>
<term>Metamorphosis, Biological (MeSH)</term>
<term>Nutrients (metabolism)</term>
<term>Signal Transduction (MeSH)</term>
<term>Snail Family Transcription Factors (genetics)</term>
<term>Snail Family Transcription Factors (metabolism)</term>
<term>TOR Serine-Threonine Kinases (genetics)</term>
<term>TOR Serine-Threonine Kinases (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Cellules endocrines (métabolisme)</term>
<term>Cycle cellulaire (physiologie)</term>
<term>Drosophila melanogaster (croissance et développement)</term>
<term>Drosophila melanogaster (génétique)</term>
<term>Drosophila melanogaster (métabolisme)</term>
<term>Ecdysone (métabolisme)</term>
<term>Endoréplication (MeSH)</term>
<term>Expression des gènes (MeSH)</term>
<term>Facteurs de transcription de la famille Snail (génétique)</term>
<term>Facteurs de transcription de la famille Snail (métabolisme)</term>
<term>Larve (croissance et développement)</term>
<term>Larve (génétique)</term>
<term>Larve (microbiologie)</term>
<term>Métamorphose biologique (MeSH)</term>
<term>Nutriments (métabolisme)</term>
<term>Poids (MeSH)</term>
<term>Protéines de Drosophila (génétique)</term>
<term>Protéines de Drosophila (métabolisme)</term>
<term>Régulation de l'expression des gènes au cours du développement (MeSH)</term>
<term>Sérine-thréonine kinases TOR (génétique)</term>
<term>Sérine-thréonine kinases TOR (métabolisme)</term>
<term>Transduction du signal (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Drosophila Proteins</term>
<term>Snail Family Transcription Factors</term>
<term>TOR Serine-Threonine Kinases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Drosophila Proteins</term>
<term>Ecdysone</term>
<term>Snail Family Transcription Factors</term>
<term>TOR Serine-Threonine Kinases</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Drosophila melanogaster</term>
<term>Larve</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Drosophila melanogaster</term>
<term>Larva</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Drosophila melanogaster</term>
<term>Larva</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Drosophila melanogaster</term>
<term>Facteurs de transcription de la famille Snail</term>
<term>Larve</term>
<term>Protéines de Drosophila</term>
<term>Sérine-thréonine kinases TOR</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Drosophila melanogaster</term>
<term>Endocrine Cells</term>
<term>Nutrients</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Larve</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Larva</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Cellules endocrines</term>
<term>Drosophila melanogaster</term>
<term>Ecdysone</term>
<term>Facteurs de transcription de la famille Snail</term>
<term>Nutriments</term>
<term>Protéines de Drosophila</term>
<term>Sérine-thréonine kinases TOR</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Cycle cellulaire</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Cell Cycle</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Body Weight</term>
<term>Endoreduplication</term>
<term>Gene Expression</term>
<term>Gene Expression Regulation, Developmental</term>
<term>Metamorphosis, Biological</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Endoréplication</term>
<term>Expression des gènes</term>
<term>Métamorphose biologique</term>
<term>Poids</term>
<term>Régulation de l'expression des gènes au cours du développement</term>
<term>Transduction du signal</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The final body size of any given individual underlies both genetic and environmental constraints. Both mammals and insects use target of rapamycin (TOR) and insulin signaling pathways to coordinate growth with nutrition. In holometabolous insects, the growth period is terminated through a cascade of peptide and steroid hormones that end larval feeding behavior and trigger metamorphosis, a nonfeeding stage during which the larval body plan is remodeled to produce an adult. This irreversible decision, termed the critical weight (CW) checkpoint, ensures that larvae have acquired sufficient nutrients to complete and survive development to adulthood. How insects assess body size via the CW checkpoint is still poorly understood on the molecular level. We show here that the Drosophila transcription factor Snail plays a key role in this process. Before and during the CW checkpoint, snail is highly expressed in the larval prothoracic gland (PG), an endocrine tissue undergoing endoreplication and primarily dedicated to the production of the steroid hormone ecdysone. We observed two Snail peaks in the PG, one before and one after the molt from the second to the third instar. Remarkably, these Snail peaks coincide with two peaks of PG cells entering S phase and a slowing of DNA synthesis between the peaks. Interestingly, the second Snail peak occurs at the exit of the CW checkpoint. Snail levels then decline continuously, and endoreplication becomes nonsynchronized in the PG after the CW checkpoint. This suggests that the synchronization of PG cells into S phase via Snail represents the mechanistic link used to terminate the CW checkpoint. Indeed, PG-specific loss of snail function prior to the CW checkpoint causes larval arrest due to a cessation of endoreplication in PG cells, whereas impairing snail after the CW checkpoint no longer affected endoreplication and further development. During the CW window, starvation or loss of TOR signaling disrupted the formation of Snail peaks and endocycle synchronization, whereas later starvation had no effect on snail expression. Taken together, our data demonstrate that insects use the TOR pathway to assess nutrient status during larval development to regulate Snail in ecdysone-producing cells as an effector protein to coordinate endoreplication and CW attainment.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">32097403</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>05</Month>
<Day>14</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>05</Month>
<Day>14</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1545-7885</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>18</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2020</Year>
<Month>02</Month>
</PubDate>
</JournalIssue>
<Title>PLoS biology</Title>
<ISOAbbreviation>PLoS Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Snail synchronizes endocycling in a TOR-dependent manner to coordinate entry and escape from endoreplication pausing during the Drosophila critical weight checkpoint.</ArticleTitle>
<Pagination>
<MedlinePgn>e3000609</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pbio.3000609</ELocationID>
<Abstract>
<AbstractText>The final body size of any given individual underlies both genetic and environmental constraints. Both mammals and insects use target of rapamycin (TOR) and insulin signaling pathways to coordinate growth with nutrition. In holometabolous insects, the growth period is terminated through a cascade of peptide and steroid hormones that end larval feeding behavior and trigger metamorphosis, a nonfeeding stage during which the larval body plan is remodeled to produce an adult. This irreversible decision, termed the critical weight (CW) checkpoint, ensures that larvae have acquired sufficient nutrients to complete and survive development to adulthood. How insects assess body size via the CW checkpoint is still poorly understood on the molecular level. We show here that the Drosophila transcription factor Snail plays a key role in this process. Before and during the CW checkpoint, snail is highly expressed in the larval prothoracic gland (PG), an endocrine tissue undergoing endoreplication and primarily dedicated to the production of the steroid hormone ecdysone. We observed two Snail peaks in the PG, one before and one after the molt from the second to the third instar. Remarkably, these Snail peaks coincide with two peaks of PG cells entering S phase and a slowing of DNA synthesis between the peaks. Interestingly, the second Snail peak occurs at the exit of the CW checkpoint. Snail levels then decline continuously, and endoreplication becomes nonsynchronized in the PG after the CW checkpoint. This suggests that the synchronization of PG cells into S phase via Snail represents the mechanistic link used to terminate the CW checkpoint. Indeed, PG-specific loss of snail function prior to the CW checkpoint causes larval arrest due to a cessation of endoreplication in PG cells, whereas impairing snail after the CW checkpoint no longer affected endoreplication and further development. During the CW window, starvation or loss of TOR signaling disrupted the formation of Snail peaks and endocycle synchronization, whereas later starvation had no effect on snail expression. Taken together, our data demonstrate that insects use the TOR pathway to assess nutrient status during larval development to regulate Snail in ecdysone-producing cells as an effector protein to coordinate endoreplication and CW attainment.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zeng</LastName>
<ForeName>Jie</ForeName>
<Initials>J</Initials>
<Identifier Source="ORCID">0000-0002-8288-6540</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, University of Alberta, Edmonton, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Huynh</LastName>
<ForeName>Nhan</ForeName>
<Initials>N</Initials>
<Identifier Source="ORCID">0000-0003-0929-4976</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, University of Alberta, Edmonton, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Phelps</LastName>
<ForeName>Brian</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, University of Alberta, Edmonton, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>King-Jones</LastName>
<ForeName>Kirst</ForeName>
<Initials>K</Initials>
<Identifier Source="ORCID">0000-0002-9089-8015</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, University of Alberta, Edmonton, Canada.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>02</Month>
<Day>25</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS Biol</MedlineTA>
<NlmUniqueID>101183755</NlmUniqueID>
<ISSNLinking>1544-9173</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029721">Drosophila Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000071250">Snail Family Transcription Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>3604-87-3</RegistryNumber>
<NameOfSubstance UI="D004440">Ecdysone</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.-</RegistryNumber>
<NameOfSubstance UI="C416303">target of rapamycin protein, Drosophila</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.1</RegistryNumber>
<NameOfSubstance UI="D058570">TOR Serine-Threonine Kinases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001835" MajorTopicYN="N">Body Weight</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002453" MajorTopicYN="N">Cell Cycle</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029721" MajorTopicYN="N">Drosophila Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004331" MajorTopicYN="N">Drosophila melanogaster</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004440" MajorTopicYN="N">Ecdysone</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055098" MajorTopicYN="N">Endocrine Cells</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D062951" MajorTopicYN="N">Endoreduplication</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015870" MajorTopicYN="N">Gene Expression</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018507" MajorTopicYN="N">Gene Expression Regulation, Developmental</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007814" MajorTopicYN="N">Larva</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008675" MajorTopicYN="N">Metamorphosis, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000078622" MajorTopicYN="N">Nutrients</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000071250" MajorTopicYN="N">Snail Family Transcription Factors</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058570" MajorTopicYN="N">TOR Serine-Threonine Kinases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<CoiStatement>The authors have declared that no competing interests exist.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>01</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>01</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>2</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>2</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>5</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32097403</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pbio.3000609</ArticleId>
<ArticleId IdType="pii">PBIOLOGY-D-19-00191</ArticleId>
<ArticleId IdType="pmc">PMC7041797</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2002 Mar;3(3):155-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11994736</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Aug 20;99(17):11043-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12177427</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2001 Oct;1(4):453-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11703937</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2005 Jul;132(14):3151-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15983400</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2015 Jun;31(6):307-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25921783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Biol. 2000 Oct 1;226(1):1-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10993670</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2011 Sep 27;21(18):R750-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21959165</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2015 May 4;25(9):R353-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25942544</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2005 Oct 25;15(20):1796-807</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16182527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Rep. 2016 Jun 28;16(1):247-262</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27320926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Death Dis. 2019 Nov 26;10(12):893</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31772150</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Jul 22;111(29):E2967-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25002478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2016 Sep 26;26(18):2469-2477</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27546572</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Dyn. 2006 Feb;235(2):315-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16273522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2014 Jan 6;24(1):76-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24332544</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Exp Med Biol. 2015;872:99-126</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26215992</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Wilehm Roux Arch Dev Biol. 1984 Sep;193(5):267-282</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28305337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1996 Oct 1;10(19):2514-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8843202</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Biol. 1974 Oct;61(2):481-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4443740</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2004 May 15;18(10):1131-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15155580</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2009;4(1):44-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19131956</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 2013 Apr 17;280(1760):20130174</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23595269</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2015 Jan;43(Database issue):D447-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25352553</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Dec 4;326(5958):1403-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19965758</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2006 Dec;7(12):907-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17139322</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1992 Mar;130(3):555-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1551577</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Neurosci. 2004 Oct;7(10):1040-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15452575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2005 Jun 3;121(5):773-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15935763</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2014;1170:113-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24906312</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1957 Sep;42(5):544-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17247715</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2000 Nov 1;14(21):2689-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11069885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 1998 Feb 12;8(4):239-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9501988</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1991 Oct 4;254(5028):118-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1925551</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1980 Oct 30;287(5785):795-801</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6776413</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2018 Feb;208(2):605-622</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29187506</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Insect Biochem Mol Biol. 2004 Sep;34(9):991-1010</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15350618</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Biol. 2008 Sep 1;321(1):18-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18632097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2002 Feb;2(2):239-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11832249</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Top Dev Biol. 2013;103:1-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23347514</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2014 Jan 15;28(2):167-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24402316</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2006 Jul;133(13):2565-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16763204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Biol. 2013 Dec 1;216(Pt 23):4334-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24259256</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurobiol Aging. 2010 Jul;31(7):1215-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18775584</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2000 Oct;127(19):4115-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10976044</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Biol. 2006 Oct 15;298(2):555-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16949568</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1987 Nov 26-Dec 2;330(6146):395-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3683556</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2010 Jun;137(12):1991-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20501590</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mol Genet. 2005 Nov 15;14(22):3449-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16207734</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2014 Jun 19;10(6):e1004425</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24945490</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Biol. 2016 Jun 15;414(2):142-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27141871</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biosci Biotechnol Biochem. 2014;78(8):1283-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25130728</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2002 Jul 26;110(2):177-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12150926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2008 Apr 8;6(4):e84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18399720</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1991 Sep;5(9):1568-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1884999</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2017 Jan 25;13(1):e1006583</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28121986</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2011 Sep;9(9):e1001160</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21980261</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2019 Feb 11;17(2):e3000149</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30742616</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2016 Feb;202(2):703-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26715667</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2014 Nov 25;3:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25421296</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2004 Aug;20(8):384-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15262411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2008 Oct;15(4):568-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18854141</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neoplasia. 2000 Jul-Aug;2(4):291-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11005563</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Top Dev Biol. 2013;103:35-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23347515</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2014 Apr;196(4):961-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24478335</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1998 Dec 1;17(23):7009-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9843507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2002 Aug;3(2):209-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12194852</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 1998 Feb 12;8(4):235-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9501987</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2011 Jul;138(13):2693-703</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21613324</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2007 Dec;13(6):857-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18061567</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1994 Dec 15;13(24):5826-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7813421</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2014 Jun 19;10(6):e1004343</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24945799</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2012 May;139(10):1713-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22510984</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Oct 28;310(5748):667-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16179433</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2009 Jul;136(14):2345-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19515698</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 1997 Jul 1;7(7):500-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9273145</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2015 Oct;201(2):433-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26245833</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Oct 23;98(22):12596-601</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11675495</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 1991 Apr;111(4):983-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1879366</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2000 Jul 15;14(14):1765-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10898791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Br J Biomed Sci. 2004;61(2):99-102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15250676</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1998 Apr 3;280(5360):101-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9525852</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 1997 Oct;124(19):3683-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9367424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioessays. 2007 Apr;29(4):344-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17373657</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2000 Nov 1;14(21):2712-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11069888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2011 Sep;138(18):4075-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21813571</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2012 May 4;336(6081):582-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22556251</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2015 Dec 10;11(12):e1005712</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26658797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Rep. 2013 Mar 28;3(3):587-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23478023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2001 May 4;105(3):297-306</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11348589</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Biochem Cell Biol. 2009 May;41(5):1006-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18992839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncogene. 2015 Jul 23;34(30):3926-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25263453</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2006 Feb 10;124(3):471-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16469695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1993 Aug 25;21(17):3951-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8371971</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013;8(3):e58936</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23555608</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Entomol. 2013;58:497-516</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23072462</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2011 Jul 15;25(14):1476-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21715559</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
</country>
<region>
<li>Alberta</li>
</region>
<settlement>
<li>Edmonton</li>
</settlement>
</list>
<tree>
<country name="Canada">
<region name="Alberta">
<name sortKey="Zeng, Jie" sort="Zeng, Jie" uniqKey="Zeng J" first="Jie" last="Zeng">Jie Zeng</name>
</region>
<name sortKey="Huynh, Nhan" sort="Huynh, Nhan" uniqKey="Huynh N" first="Nhan" last="Huynh">Nhan Huynh</name>
<name sortKey="King Jones, Kirst" sort="King Jones, Kirst" uniqKey="King Jones K" first="Kirst" last="King-Jones">Kirst King-Jones</name>
<name sortKey="Phelps, Brian" sort="Phelps, Brian" uniqKey="Phelps B" first="Brian" last="Phelps">Brian Phelps</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000044 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000044 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32097403
   |texte=   Snail synchronizes endocycling in a TOR-dependent manner to coordinate entry and escape from endoreplication pausing during the Drosophila critical weight checkpoint.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32097403" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020